Compartilhe com sua comunidades

Estratégias do Chief Data Officer da Mastercard para eliminar vieses de dados

Chief Data Officer da Mastercard detalha métodos para garantir qualidade e precisão na análise de dados

Andrew Reiskind, Chief Data Officer da Mastercard, destacou a importância de identificar e eliminar vieses na análise de dados durante um evento em Nova York. Segundo Reiskind, a equipe trabalha intensivamente na criação de modelos de IA que atendam às exigências de precisão e transparência. Ele enfatiza que o processo envolve a avaliação constante dos dados utilizados pela empresa, localizando e eliminando a discriminação.

Com seis anos na Mastercard, Reiskind é responsável pela governança da inteligência artificial, garantindo a qualidade dos dados através de conceitos como “data readiness” e “data accuracy”. Ele ressalta a necessidade de oferecer serviços com dados corretos e transparentes, especialmente para grandes clientes como bancos.

Crítico do “hype da inteligência artificial”, Reiskind afirma que ainda há muito trabalho pela frente para garantir modelos confiáveis e dados que suportem decisões eficazes. Para isso, a Mastercard adota o conceito “human in the loop”, onde humanos avaliam dados para reduzir riscos.

Reiskind explica que a qualidade e a precisão dos dados são essenciais, dependendo dos objetivos específicos. Por exemplo, a confiabilidade dos vendedores é determinada através de verificações constantes por fontes internas e independentes. Em casos de suspeita de fraude, como uso indevido de chips de cartão, sistemas automatizados identificam e investigam rapidamente possíveis golpes.

Eliminando vieses, Reiskind acredita que todas as empresas com grandes volumes de dados devem seguir essa prática, pois aumenta o valor dos dados e beneficia os negócios. Ele cita que práticas de IA Responsável podem, sim, trazer lucros, alinhando-se aos objetivos estratégicos das empresas.

Quanto ao uso de dados sintéticos para resolver problemas de escassez e corrigir vieses, Reiskind é cético. Ele questiona se essa metodologia realmente funciona e se pode corrigir ou reforçar os vieses existentes. O futuro dessa prática ainda precisa ser comprovado.

Reiskind acredita que ainda estamos no início do “hype” da IA generativa. Ele espera que a realidade sobre as expectativas grandiosas da tecnologia se torne clara em breve, mostrando que, embora promissora, a IA não é uma solução mágica para todos os problemas.

Gustavo Fleming Martins

Informação valiosa, 
no tempo certo

Assine nossa newsletter

Anúncio

Falar sobre dinheiro pode soar frio, mas quando olhamos para o trabalho da Forbes entendemos que a fortuna é apenas a superfície de histórias muito maiores. A nova edição da...
Na noite do lançamento da SP2B, em São Paulo, 240 pessoas se reuniram no SP Hall. O clima era de expectativa, como quem assiste ao nascer de uma estrela. De...
O e-commerce no Brasil não é um ringue de dois. É uma corrida com pelotão denso e pista longa. O Mercado Livre lidera com 13% de participação. A Shopee vem...
Jensen Huang não é qualquer figurinha carimbada do Vale do Silício. Ele é o fundador e CEO da NVIDIA, a empresa que abastece o motor da inteligência artificial moderna. Suas...
A Volkswagen do Brasil está ampliando sua aposta na produção nacional como pilar de competitividade, inovação e geração de valor. Com investimento de R$ 20 bilhões programado para a América...
A Nvidia, empresa que lidera globalmente o fornecimento de chips para inteligência artificial, está no centro de uma disputa geopolítica que combina sanções comerciais, restrições tecnológicas e acusações de segurança...